An Efficient Finite Difference Method for Parameter Sensitivities of Continuous Time Markov Chains

نویسنده

  • David F. Anderson
چکیده

We present an efficient finite difference method for the computation of parameter sensitivities that is applicable to a wide class of continuous time Markov chain models. The estimator for the method is constructed by coupling the perturbed and nominal processes in a natural manner, and the analysis proceeds by utilizing a martingale representation for the coupled processes. The variance of the resulting estimator is shown to be an order of magnitude lower due to the coupling. We conclude that the proposed method produces an estimator with a lower variance than other methods, including the use of Common Random Numbers, in most situations. Often the variance reduction is substantial. The method is no harder to implement than any standard continuous time Markov chain algorithm, such as “Gillespie’s algorithm.” The motivating class of models, and the source of our examples, are the stochastic chemical kinetic models commonly used in the biosciences, though other natural application areas include population processes and queuing networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Processes with Applications to Biology ,

[3] David F. Anderson, An efficient finite difference method for parameter sensitivities of continuous time markov chains, Submitted. Available on arxiv.org at Error analysis of tau-leap simulation methods, to appear in Annals of Applied Probability. [7] David F. Anderson and Masanori Koyama, Weak error analysis of numerical methods for stochastic models of population processes, Submitted. Avai...

متن کامل

A finite difference method for estimating second order parameter sensitivities of discrete stochastic chemical reaction networks.

We present an efficient finite difference method for the approximation of second derivatives, with respect to system parameters, of expectations for a class of discrete stochastic chemical reaction networks. The method uses a coupling of the perturbed processes that yields a much lower variance than existing methods, thereby drastically lowering the computational complexity required to solve a ...

متن کامل

Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes

Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded  DNA virus. There were two approaches for prediction of each Markov Model parameter,...

متن کامل

An asymptotic relationship between coupling methods for stochastically modeled population processes

This paper is concerned with elucidating a relationship between two common coupling methods for the continuous time Markov chain models utilized in the cell biology literature. The couplings considered here are primarily used in a computational framework by providing reductions in variance for different Monte Carlo estimators, thereby allowing for significantly more accurate results for a fixed...

متن کامل

An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal

In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2012